A
Major Project
On

ANDROID MALWARE DETECTION USING GENETIC ALGORITHM

(Submitted in partial fulfillment of the requirements for the award of Degree)
BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING
By
P. LIKHITHA KRISHNAJA (187R1A05M4)

A. PRANAY (197R5A0515)
N. SUKRUTHA (197R5A0514)

Under the Guidance of

NAJEEMA AFRIN

(Assistant Professor)

= =

CMR

LROUP OF INSTITUTIORNS

FEFEOEE TOIMVENT

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS
(Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by AICTE,

New Delhi) Recognized Under Section 2(f) & 12(B) of the UGCAct.1956,
Kandlakoya (V), Medchal Road, Hyderabad-501401.
2018-22



DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Wk
v

CIROUP OF INSTITUTIONS
EXFLOAE TOIRVENT

CERTIFICATE

This is to certify that the project entitled “ANDROID MALWARE DETECTION USING
GENETIC ALGORITHM?” being submitted by P. LIKHITHA KRISHNAJA (187R1A05M4),
A. PRANAY (197R5A0515), N. SUKRUTHA (197R5A0514) in partial fulfillment of the
requirements for the award of the degree of B. Tech in Computer Science and Engineering to the
Jawaharlal Nehru Technological University Hyderabad is a record of bonafide work carried out by

him/her under our guidance and supervision during the year 2021-22.

The results embodied in this thesis have not been submitted to any other University or Institute for

the award of any degree or diploma.

Najeema Afrin Dr. A. Raji Reddy
Assistant Professor DIRECTOR
INTERNAL GUIDE

Dr. K. Srujan Raju EXTERNAL EXAMINER
HOD

Submitted for viva voice Examination held on




ACKNOWLEGDEMENT

Apart from the efforts of us, the success of any project depends largely on the
encouragement and guidelines of many others. We take this opportunity to express our gratitude
to the people who have been instrumental in the successful completion of this project.

We take this opportunity to express my profound gratitude and deep regard to my guide
Mrs. Najeema Afrin, Assistant Professor for his exemplary guidance, monitoring, and constant
encouragement throughout the project work. The blessing, help and guidance given by him shall carry
us a long way in the journey of life on which we are about to embark. We also take this opportunity
to express a deep sense of gratitude to Project Review Committee (PRC) Mr. A. Uday Kiran, Mr.
J. Narasimha Rao, Dr. T. S. Mastan Rao, Mrs. G. Latha, Mr. A. Kiran Kumar for their cordial
support, valuable information, and guidance, which helped us in completing this task through

various stages.

We are also thankful to Dr. K. Srujan Raju, Head, Department of Computer Science and
Engineering for providing encouragement and support for completing this project successfully.
We are obliged to Dr. A. Raji Reddy, Director for being cooperative throughout the
course of this project. We also express our sincere gratitude to Sri. Ch. Gopal Reddy, Chairman
for providing excellent infrastructure and a nice atmosphere throughout the course of this project.
The guidance and support received from all the members of CMR Technical Campus who
contributed to the completion of the project. We are grateful for their constant support and help.
Finally, we would like to take this opportunity to thank our family for their constant
encouragement, without which this assignment would not be completed. We sincerely acknowledge

and thank all those who gave support directly and indirectly in the completion of this project.

P. LIKHITHA KRISHNAJA (187R1A05M4)
A. PRANAY (197R5A0515)

N. SUKRUTHA (197R5A0514)



Android Malware Detection using Genetic Algorithm

ABSTRACT

Android platform due to open-source characteristic and Google backing has the largest
global market share. Being the world’s most popular operating system, it has drawn the
attention of cyber criminals operating particularly through wide distribution of malicious
applications. This project proposes an effectual machine-learning based approach for
Android Malware Detection making use of evolutionary Genetic algorithm for
discriminatory feature selection. Selected features from Genetic algorithm are used to
train machine learning classifiers and their capability in identification of Malware before
and after feature selection is compared. The experimentation results validate that Genetic
algorithm gives most optimized feature subset helping in reduction of feature dimension
to less than half of the original feature-set. Classification accuracy of more than 94% is
maintained post feature selection for the machine learning based classifiers, while
working on much reduced feature dimension, thereby, having a positive impact on

computational complexity of learning classifiers.



Android Malware Detection using Genetic Algorithm

LIST OF FIGURES/TABLES
FIGURE NO FIGURE NAME PAGE NO
Figure 3.1 Project Architecture 11
Figure 3.2.3 Feature Selection using Genetic Algorithm 13
Figure 3.2.4.1 Support Vector Machine Algorithm 15
Figure 3.2.4.2 Neural Networks machine learning model 16
Figure 3.3 Use case diagram 17
Figure 3.4 Class diagram 18
Figure 3.5 Sequence diagram 19
Figure 3.6 Activity diagram 20
Figure 3.7 Dataflow diagram 21
Table 5.2.1 Features selected by genetic algorithm 36
Graph 5.2.2 ROC curves for SVM Classifier 37
Graph 5.2.3 ROC curves for NN Classifier 37
Graph 5.2.4 Comparing Accuracy of SVM and NN 37

machine learning models.

il



Android Malware Detection using Genetic Algorithm

List of Screenshots

Screenshot Screenshot Name Page
no. no.
5.1.1 Obtaining URL after running the app.y file in project folder. 29
5.1.2 User interface for uploading sample android malware application APIs 29
5.1.3 Sample malware application APIs for testing 30
5.14 Discriminatory features selected using genetic algorithm 30

5.1.5 Testing Malware Sample 1 using Support Vector Machine (SVM) Model 31
5.1.6 Testing Malware Sample 1 using Neural Network (NN) Model 31
5.1.7 Testing Malware Sample 2 using Support Vector Machine (SVM) Model 32
5.1.8 Testing Malware Sample 2 using Neural Network (NN) Model 32
5.1.9 Testing Malware Sample 3 using Support Vector Machine (SVM) Model 33
5.1.10 Testing Malware Sample 3 using Neural Network (NN) Model 33
5.1.11 Testing Malware Sample 4 using Support Vector Machine (SVM) Model 34
5.1.12 Testing Malware Sample 4 using Neural Network (NN) Model 34
5.1.13 Testing Malware Sample 5 using Support Vector Machine (SVM) Model 35

5.1.14 Testing Malware Sample 5 using Neural Network (NN) Model 35

il



Android Malware Detection using Genetic Algorithm

TABLE OF CONTENTS

ABSTRACT i

LIST OF FIGURES i

LIST OF SCREENSHOTS iii
1. INTRODUCTION 1

1.1 PROJECT SCOPE 2
1.2 PROJECT PURPOSE 2
1.3 PROJECT FEATURES 2
2. SYSTEM ANALYSIS 3
2.1 PROBLEM DEFINITION 4
2.2 EXISTING SYSTEM 5
2.2.1 LIMITATIONS OF THE EXISTING SYSTEM 6
2.3 PROPOSED SYSTEM 7
2.3.1 ADVANTAGES OF PROPOSED SYSTEM 7
2.4 FEASIBILITY STUDY 8
2.4.1 ECONOMIC FESIBILITY 8
2.4.2 TECHNICAL FEASIBILITY 8
2.4.3 BEHAVIOURAL FEASIBILITY 9
2.5 HARDWARE & SOFTWARE REQUIREMENTS 9
2.5.1 HARDWARE REQUIREMENTS 9
2.5.2 SOFTWARE REQUIREMENTS 9
3. ARCHITECTURE 10

3.1 PROJECT ARCHITECTURE 11

3.2 MODULES DESCRIPTION 12
3.2.1 DATA PREPROCESSING 12
3.2.2 FEATURES EXTRACTION AND SELECTION 12
3.2.3 DISCRIMINATORY FEATURES SELECTION 13
3.2.4 MACHINE LEARNING BASED CLASSIFICATION 14

3.2.5 DISPLAY ACCURACY RESULTS 16



33 USE CASE DIAGRAM

3.4 CLASS DIAGRAM
3.5 SEQUENCE DIAGRAM
3.6 ACTIVITY DIAGRAM

3.7 DATAFLOW DIAGRAM

4 IMPLEMENTATIONS
4.1 SAMPLE CODE
5 RESULTS
5.1 SCREENSHOTS
5.2 RESULT ANALYSIS
6 TESTING
6.1 INTRODUCTION TO TESTING
6.2 TYPES OF TESTING
6.2.1 UNIT TESTING
6.2.2 INTEGRATION TESTING
6.2.3 FUNCTIONAL TESTING
6.3 TEST CASES

7. CONCLUSION & FUTURE SCOPE
7.1 CONCLUSION
7.2 FUTURE SCOPE

8. BIBILOGRAPHY

8.1 REFERENCES
8.2 WEBSITES
8.3 GITHUB LINK

9. PAPER PUBLICATION

10. CERTIFICATES

17
18
19
20
21

22

23

28
29
36
38
39
39
39

39
40

40

41
42
42

43
44

45
45

46

52



CMRT

1. INTRODUCTION



Android Malware Detection using Genetic Algorithm

1. INTRODUCTION

1.1 PROJECT SCOPE

As the use of smartphones increases, Android, as a Linux-based open-source mobile
operating system (OS), has become the most popular mobile OS in time. Due to the
widespread use of Android, malware developers mostly target Android devices and users.
Malware detection systems to be developed for Android devices are important for this
reason. Machine learning methods are being increasingly used for detection and analysis
of Android malware. This study presents a method for detecting Android malware using

feature selection with genetic algorithm.

1.2 PROJECT PURPOSE

The purpose of this study is an effectual machine-learning based approach for Android
Malware Detection making use of evolutionary Genetic algorithm for discriminatory
feature selection. Selected features from Genetic algorithm are used to train machine
learning classifiers and their capability in identification of Malware before and after feature
selection is compared. The experimentation results validate that Genetic algorithm gives
most optimized feature subset helping in reduction of feature dimension to less than half

of the original feature-set.

1.3 PROJECT FEATURES

The main feature of this system is to propose a general and effective approach to detect the
malicious applications for android operating system. As the number of threats posed to
Android platforms is increasing day to day, spreading mainly through malicious
applications or malwares, therefore it is very important to design a framework which can
detect such malwares with accurate results. Where signature-based approach fails to detect
new variants of malware posing zero-day threats, machine learning based approaches are
being used. The proposed methodology attempts to make use of evolutionary Genetic
Algorithm to get most optimized feature subset which can be used to train machine learning

algorithms in most efficient way.

CMRTC



Android Malware Detection using Genetic Algorithm

2. SYSTEM ANALYSIS

CMRTC



Android Malware Detection using Genetic Algorithm

2. SYSTEM ANALYSIS

SYSTEM ANALYSIS

System Analysis is the important phase in the system development process. The System is
studied to the minute details and analyzed. Analysis is the process of finding the best
solution to the problem. System analysis is the process by which we learn about the existing
problems, define objects and requirements, and evaluate the solutions. It is the way of
thinking about the organization and the problem it involves, a set of technologies that helps
in solving these problems. Feasibility study plays an important role in system analysis

which gives the target for design and development.

2.1 PROBLEM DEFINITION

This project is primarily concerned with improving the accuracy of malware detection and
the time required to develop the model. The suggested approach attempts to use a Genetic
Algorithm to obtain the most optimal function subset that can be used to inform machine
studying algorithms in the most effective manner.

¢ The major objective is to detect android malwares in each dataset.

¢ To create a software which uses the given dataset to train & test the available algorithms
and detect the Malware applications if any in the given new data.

e Comparison between the three algorithms i.e. SVM, Neural Network and Genetic

Algorithm for more precise evaluation.

CMRTC



Android Malware Detection using Genetic Algorithm

2.2 EXISTING SYSTEM

Android Apps are freely available on Google Play store, the official Android app store as
well as third-party app stores for users to download. Due to its open-source nature and
popularity, malware writers are increasingly focusing on developing malicious
applications for Android operating system. Despite various attempts by Google Playstore
to protect against malicious apps, they still find their way to mass market and cause harm
to users by misusing personal information related to their phone book, mail accounts, GPS
location information and others for misuse by third parties or else take control of the phones
remotely. Therefore, there is need to perform malware analysis or reverse-engineering of
such malicious applications which pose serious threat to Android platforms.

Given in to the ever-increasing variants of Android Malware posing zero-day
threats, an efficient mechanism for detection of Android malwares is required. In contrast
to signature-based approach which requires regular update of signature database, machine-
learning based approach in combination with static and dynamic analysis can be used to
detect new variants of Android Malware posing zero-day threats.

The reduction of feature dimension to less than half of original feature-set using
Genetic Algorithm such that it can be fed as input to machine learning classifiers for
training with reduced complexity while maintaining their accuracy in malware
classification. In contrast to exhaustive method of feature selection which requires testing
for 2N different combinations, where N is the number of features, Genetic Algorithm, a
heuristic searching approach based on fitness function has been used for feature selection.
The optimized feature set obtained using Genetic algorithm is used to train two machine

learning algorithms

CMRTC



Android Malware Detection using Genetic Algorithm

2.2.1 LIMITATIONS OF EXISTING SYSTEM

e Storing of large amounts of data that contains a lot of information about malicious

application is posing a challenge for the app users.

e Sometimes the data is entered manually, and humans can make mistakes, so there are
chances of incorrect data being entered in the dataset which can lead to inaccurate results

while analyzing the data.

e Insuch a large dataset, there is always a chance of some fields containing missing values,
these missing values can make the data noisy and thus we must take appropriate measures

to remove inconsistency from the datasets.
e Lack of sufficient analytical support to back up their data.

e Due to its opensource nature and popularity, malware writers are increasingly focusing on

developing malicious applications for Android operating system.

CMRTC



Android Malware Detection using Genetic Algorithm

2.3 PROPOSED SYSTEM

e The proposed system implements machine algorithm to detect malicious app data in
android operating system using genetic algorithm’s optimized feature selection.

e Two set of Android Apps or APKs: Malware/Goodware are reverse engineered to
extract features such as permissions and count of App Components such as Activity,
Services, Content Providers, etc. These features are used as feature vector with class
labels as Malware and Goodware represented by 0 and 1 respectively in CSV format.

e To reduce dimensionality of feature-set, the CSV is fed to Genetic Algorithm to
select the most optimized set of features. The optimized set of features obtained is
used for training two machine learning classifiers: Support Vector Machine and
Neural Network.

e In the proposed methodology, static features are obtained from
AndroidManifest.xml which contains all the important information needed by any
Android platform about the Apps. Androguard tool has been used for disassembling
of the APKs and getting the static features.

2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

The system is very simple in design and to implement. The system requires very low
system resources, and the system will work in almost all configurations. It has got

following features

* Better services
* Ensure data accuracies.

* Greater efficiency.
* Security
*  Minimum time needed for the various processing.

* Proposed a novel and efficient algorithm for feature selection to improve overall
detection accuracy.

* Machine-learning based approach in combination with static and dynamic analysis
can be used to detect new variants of Android Malware posing zero-day threats.

CMRTC



Android Malware Detection using Genetic Algorithm

2.4 FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and business proposal is put
forth with a very general plan for the project and some cost estimates. During
system analysis the feasibility study of the proposed system is to be carried out.
This is to ensure that the proposed system is not a burden to the company. Three
key considerations involved in the feasibility analysis are

* Economic Feasibility

* Technical Feasibility

* Social Feasibility

2.4.1 ECONOMIC FEASIBILITY

The developing system must be justified by cost and benefit. Criteria to ensure that
effort is concentrated on project, which will give best, return at the earliest. One of
the factors, which affect the development of a new system, is the cost it would

require.

The following are some of the important financial questions asked during

preliminary investigation:

* The costs conduct a full system investigation.
* The cost of the hardware and software.
* The benefits in the form of reduced costs or fewer costly errors.
Since the system is developed as part of project work, there is no manual cost
to spend for the proposed system. Also, all the resources are already available, it

gives an indication of the system is economically possible for development.

2.4.2 TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility, that is, the technical
requirements of the system. Any system developed must not have a high demand
on the available technical resources. The developed system must have a modest
requirement, as only minimal or null changes are required for implementing this

system.

CMRTC



Android Malware Detection using Genetic Algorithm

2.4.3 BEHAVIORAL FEASIBILITY

The aspect of study is to check the level of acceptance of the system by the user.
This includes the process of training the user to use the system efficiently. The user
must not feel threatened by the system, instead must accept it as a necessity. The
level of acceptance by the users solely depends on the methods that are employed
to educate the user about the system and to make him familiar with it. His level of
confidence must be raised so that he is also able to make some constructive

criticism, which is welcomed, as he is the final user of the system.

2.5 HARDWARE & SOFTWARE REQUIREMENTS

2.5.1 HARDWARE REQUIREMENTS:
Hardware interfaces specifies the logical characteristics of each interface
between the software product and the hardware components of the system. The

following are some hardware requirements.

*  System : Intel 15
Hard Disk : 30GB and above
e Ram : 4GB and above

2.5.2 SOFTWARE REQUIREMENTS:

Software Requirements specifies the logical characteristics of each interface and

software components of the system. The following are some software

requirements.
* Operating system : Windows 10
* Programming language : Python 3.8
* Environment : Anaconda
* Tool : Jupyter Notebook

CMRTC



Android Malware Detection using Genetic Algorithm

3. ARCHITECTURE

CMRTC 10



Android Malware Detection using Genetic Algorithm

3. ARCHITECTURE

3.1 PROJECT ARCITECTURE

This project architecture shows the procedure followed for breed detection using

machine learning, starting from input to final prediction.

[t it — d——::l_
Psbmare Gusisare
BAPK= 5ol ] e
— -
L]

Feature extraction
[Permissions and application components)

Feature seleclion
{Discriminatorny feature selected using gentic algaorithim)

Evaluation of SWM machine leaming algorithm

Cl=play accuracy of maching learning model and results

Figure 3.1: Project Architecture of Android Malware Detection using Genetic Algorithm

CMRTC 11



Android Malware Detection using Genetic Algorithm

3.2 MODULES DESCRIPTION

In the proposed work, Genetic algorithm has been used because of its capabilities in
finding a feature subset selected from original feature vector such that it gives the best accuracy
for classifiers on which they are trained. It has been used, previously also, in combination with

machine learning and deep learning algorithms to obtain the most optimal feature subset.

3.2.1 DATA PREPROCESSING

Two set of Android Apps or APKs: Malware/Goodware are reverse engineered to extract features
such as permissions and count of App Components such as Activity, Services, Content Providers,
etc. These features are used as feature vector with class labels as Malware and Goodware

represented by 0 and 1 respectively in CSV format.

3.2.2 FEATURES EXTRACTION AND SELECTION

To reduce dimensionality of feature-set, the CSV is fed to Genetic Algorithm to select the most
optimized set of features. The optimized set of features obtained is used for training two machine
learning classifiers: Support Vector Machine and Neural Network. In proposed methodology,
basically involving two units: feature extraction using Androguard tool and feature selection using
Genetic Algorithm. Finally, the selected features are fed as input to machine learning algorithms
for evaluation purpose.

A. Reverse-Engineering of Android APKs

In the proposed methodology, static features are obtained from AndroidManifest.xml which
contains all the important information needed by any Android platform about the Apps.
Androguard tool has been used for disassembling of the APKs and getting the static features.

B. Feature Vector

Features are extracted and mapped to a feature vector as follows:

App Components: The counts of App components such as Activity, Services, Content Providers

and Broadcast Receivers are used as a feature vector.

Permissions: The permissions feature-set are mapped to a |S| dimensional vector space such that a
dimension is set to 1 if the app x contains the feature and 0 otherwise. In this way, a vector y(x) is
constructed for each feature extracted from app x with the respective dimension is set to 1 and all

other dimensions to 0. It can be summarized in equation (1): y: X {0;1} |S]

CMRTC 12



Android Malware Detection using Genetic Algorithm

3.2.3 Discriminatory Feature Selection

In malware detection, selecting most significant features is an important step as it has a significant
impact on quality of experimental results. Also, working on low-dimensional feature vector
consisting of only discriminatory features will help in reducing computational complexity of
learning classifier. The CSV consisting of all features is fed into Genetic algorithm which gives best

subset of features for the machine learning based classifier.

Features selected are represented by binary form called chromosomes such that if the feature is
included it is represented by 1 and if it is excluded it is represented by O in the chromosome. The
genetic algorithm maintains a subset of features or chromosome called population along with their

fitness scores such that chromosome with better fitness scores are given more chance to reproduce.

The fitness function of genetic algorithm is defined such that the chromosome that gives high
accuracy on the machine learning based classifier is assigned a larger value in comparison to
features that give lower accuracy for it. The chromosomes with best fitness score are selected as

parent to produce next generation of offspring using the process of crossover and mutation.

The steps involved in feature selection using Genetic Algorithm can be summarized as below:
Step 1: Initialize the algorithm using feature subsets which are binary encoded such that if the
feature is included it is represented by 1 and if it is excluded it is represented by O in the
chromosome.

Step 2: Start the algorithm defining an initial set of population generated randomly.

Step 3: Assign a fitness score calculated by the defined fitness function for genetic algorithm.
Step 4: Selection of Parents: Chromosomes with good fitness scores are given preference over
others to produce next generation of off-springs.

Step 5: Perform crossover and mutation operations on the selected parents with the given probability
of crossover and mutation for generation of off-springs. Repeat the Steps 3 to 5 iteratively till the
convergence is met and fittest chromosome from population, that is, the optimal feature subset is
resulted.

Repeat the Steps 3 to 5 iteratively till the convergence is met and fittest chromosome from

population, that is, the optimal feature subset is resulted.

CMRTC 13



Android Malware Detection using Genetic Algorithm

r-chromasomes
Population

4-

; Compirtatan of

fimess: fisncton

v

Selection of
Parends

-

Appication of Crossover and Mutation
for neodt generation of off-springs

"

Optimally Seleced
Feature Subset

Figure 3.2.3 Feature Selection using Genetic Algorithm

3.2.4 MACHINE LEARNING BASED CLASSIFICATION

Given in to the ever-increasing variants of Android Malware posing zero-day threat,
machine learning based techniques are being preferred over traditional signature-based
approach which required regular update of signature database. The selected features using
Genetic Algorithm are used to train and test the classifiers with following algorithms:

Support Vector Machine Algorithm (SVM)

Support Vector Machine or SVM is one of the most popular Supervised Learning algorithms,
which is used for Classification as well as Regression problems. However, primarily, it is
used for Classification problems in Machine Learning. The goal of the SVM algorithm is to
create the best line or decision boundary that can segregate n-dimensional space into classes
so that we can easily put the new data point in the correct category in the future.

This best decision boundary is called a hyperplane. SVM chooses the extreme
points/vectors that help in creating the hyperplane. These extreme cases are called as support

vectors, and hence algorithm is termed as Support Vector Machine.

CMRTC 14



Android Malware Detection using Genetic Algorithm

Consider the below diagram in which there are two different categories that are classified

using a decision boundary or hyperplane:

Ejbﬁ Pl s

Plarngim

P ol
¢r 1&vparplans
s .-"-..
Pt s " “¥ L .
Pl Iy e S * &
- .

Hypplarne

Meagntiee Hyp=arplarmmn

Figure 3.2.4.1 Support Vector Machine Algorithm
SVM algorithm can be used for Face detection, image classification, text categorization, etc.
Types of SVM -SVM can be of two types: 5
Linear SVM: Linear SVM is used for linearly separable data, which means if a dataset can
be classified into two classes by using a single straight line, then such data is termed as linearly
separable data, and classifier is used called as Linear SVM classifier.
Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which means if
a dataset cannot be classified by using a straight line, then such data is termed as non-linear
data and classifier used is called as Non-linear SVM classifier.
Hyperplane and Support Vectors in the SVM algorithm:
Hyperplane: There can be multiple lines/decision boundaries to segregate the classes in
ndimensional space, but we need to find out the best decision boundary that helps to classify
the data points. This best boundary is known as the hyperplane of SVM. The dimensions of
the hyperplane depend on the features present in the dataset, which means if there are 2
features (as shown in image), then hyperplane will be a straight line. And if there are 3
features, then hyperplane will be a 2-dimension plane. We always create a hyperplane that has
a maximum margin, which means the maximum distance between the data points.
Support Vectors: The data points or vectors that are the closest to the hyperplane and which
affect the position of the hyperplane are termed as Support Vector. Since these vectors support
the hyperplane, hence called a Support vector.
Neural Networks Algorithm (NN)

It is a procedure learning system that uses a network of functions to grasp and translate an
information input of 1 kind into the specified output, sometimes in another kind. The thought
if the unreal neural network was impressed by human biology and therefore the method

neurons of the human brain along to grasp inputs from human senses.

CMRTC 15



Android Malware Detection using Genetic Algorithm

Neural networks are only one of the numerous tools and approaches employed in machine

learning algorithms. The neural network itself is also used as a bit in many various machine

learning algorithms to method advanced inputs into areas that computers will perceive.

Neural networks are inspired by the biological neural networks in the brain, or we can say the

nervous system. It has generated a lot of excitement, and research is still going on this subset

of Machine Learning in the industry. The basic computational unit of a neural network is a

neuron or node. It receives values from other neurons and computes the output. Each

node/neuron is associated with weight(w). This weight is given as per the relative importance

of that neuron or node. So, if we take f as the node function, then the node function f will

provide output as shown below:

TP W

Xp

niput Layer

Hidden Layer

L1 . -
-\. 4
.\"- L
L ) %
, " 1 "|"
s
5 -
e . 1
P! i
7 #
-

/ _.a-ﬁ"._ Y
- 1) - .__-".

Wighted sums

Figure 3.2.4.2 Neural Networks machine learning model

Output of neuron(Y) = f (w1.X1 +w2.X2 +b)

Where wl and w2 are weight, X1 and X2 are numerical inputs, whereas b is the bias.

The above function f is a non-linear function also called the activation function. Its basic

purpose is to introduce non-linearity as almost all real-world data is non-linear, and we want

neurons to learn these representations.

3.2.5 DISPLAY ACCURACY RESULTS

After selection of machine learning model and uploading application APKSs on clicking predict

button we obtain accuracy results of predicted android malware applications.

CMRTC

16



3.3 USE CASE DIAGRAM

Android Malware Detection using Genetic Algorithm

In the use case diagram, we have basically two actors who are the user and the administrator. The

user has the rights to login, access to resources and to view the crime details. Whereas the

administrator has the login, access to resources of the users and the right to update and remove the

crime details, and he can also view the user files.

|
A dataset

A &Tesl Model _x‘l

..- ... o~ - ..'
I.x. ._.'I .;_, ; a ‘... . ."'-\.,_ ;
G . Display recards e _ _
|-"" - - ..'\. & -_---'—-_
I%:' -l 2 .__,'.--'F,.l~
- il
i o = g "
l_.-"' x\x ., i =TT e .-"'--. - .-'f i M'\.
ek W e W i SYSTEM
VSRR -\ ) Run SyM Alg e o
o iy i
=, - - s
, -— /
", b
e i

*’ Up'nad android e

Genrate Train

-
-

x,h:f’ DIEDH}‘ Accuracy “~: -
. Graph .

CMRTC

Figure 3.3: Use Case Diagram for Android Malware Detection Using Genetic Algorithm

17



Android Malware Detection using Genetic Algorithm

3.4 CLASS DIAGRAM

Class Diagram is a collection of classes and objects.

User System
+ User id .
+User_name +5y5.1d
+User_emall

1 L

+ Unload android dataset ()
+ Data Preprocessing () + Display records ()
+ view Display records () + SYM result ()
+view SYM result ) + Display accuracy Graph ()

+View Display accuracy Graph ()

Figure 3.4: Class Diagram for Android Malware Detection using Genetic Algorithm

CMRTC 18



Android Malware Detection using Genetic Algorithm

3.5 SEQUENCE DIAGRAM

f
Feature alure select . .
Lser etiaclon IFE&lUr%‘ selection Lir:rluri1lrr;'uljr;'i|!|=r| % Ll Dis E"’-W ecard Fun S i Sﬂ|ﬂ.}' Gragh
: , L
| : | /
| | |
| | |
| | |
| | | |
. | | |
| | |
collect features : | :
|
| | | |
- : | |
- | |
. | |
wplimize: fealure sehclion using genlic ay | |
| |
Ll | |
i | |
| : | |
| | s i | Hilag oo b training |
| | A5 et ' Iesling T (L CCAlrany '
l wrferbre catried coloed. S * ol *
l [ ral
- l | | :
| |
) | | | |
| | | |
4 I | | |
| | | |
I | | |
| | | | |
| | | |
X X X X X X

Figure 3.5: Sequence Diagram of Android Malware Detection using Genetic Algorithm

CMRTC 19




Android Malware Detection using Genetic Algorithm

3.6 ACTIVITY DIAGRAM

It describes about flow of activity states.

CMRTC

-
!

Upload Database

l

Data Preprocessing

:

Feature Extraction &
selection

l

Generate train & test
moaodel

IT train &
test dataset
accurate ?

Display record

¥
| Run SVIM

l

I Display Graph

ki

Figure 3.6: Activity Diagram for Android Malware Detection using Genetic Algorithm

20



Android Malware Detection using Genetic Algorithm

3.7 DATAFLOW DIAGRAM

It describes about flow of activity data.

User i 02

Train svim Test svm
st il proveide i .
Gdirilie sansles algﬂmhm a|g0[|[hm

f

Rarsernelbegln samples

T iara

DEsd protessing |

!

-k

| s il | Level 1

L

...................... f---------------------------------------------------------- AGuE gl e B e e e e
iy
|
Y |

S

HHLFHL raTeansn |

..................................................................................................................

S ikt (g o
Alg=tifin

Y

| Ll
TEsls
\

(bt of Tl ]
1 Achliale it

Display it |

| Hpvalt | Level 3

Figure 3.7: Dataflow Diagram for Android Malware Detection using Genetic Algorithm

CMRTC 21



Android Malware Detection using Genetic Algorithm

4. IMPLEMENTATION

CMRTC 22



Android Malware Detection using Genetic Algorithm

4. IMPLEMENTATION

4.1 SAMPLE CODE
A) APP.PY

from flask import Flask, render template, request, redirect, url for, flash
from werkzeug.utils import secure filename
import os
import classifier
app = Flask(__name )
app.config['UPLOAD_FOLDER'] ="/static/upload/
app.config['SECRET KEY'] ='d3Y5d5nJkU6CdwY"
if os.path.exists(app.config[ UPLOAD FOLDER'):
print("directory exists")
else:
os.makedirs(app.config[' UPLOAD FOLDER'))
print("directory created")
@app.route("/", methods=["GET", "POST"])
def home():
algorithms = {'Neural Network": '92.26 %', 'Support Vector Classifier': '89 %'}
result, accuracy, name, sdk, size=",",", ", "
if request.method == "POST":
if 'file' not in request.files:
flash('No file part')
return redirect(request.url)
file = request.files|'file']
# if user does not select file, browser also
# submit an empty part without filename
if file.filename ==":
flash('No selected file")
return redirect(request.url)
if file and file.filename.endswith('.apk’):
filename = secure filename(file.filename)
print(filename)
file.save(os.path.join(app.config[' UPLOAD FOLDER'], filename))
if request.form['algorithm'] == 'Neural Network'":
accuracy = algorithms['Neural Network']
result, name, sdk, size = classifier.classify(os.path.join(app.config'UPLOAD FOLDER'],
filename), 0)
elif request.form['algorithm'] == "Support Vector Classifier":
accuracy = algorithms['Support Vector Classifier']
result, name, sdk, size = classifier.classify(os.path.join(app.config['UPLOAD FOLDER'],
filename), 1)
return render template("index.html", result=result, algorithms=algorithms.keys(),
accuracy=accuracy, name=name,
sdk=sdk, size=size)
if name ==" main_": # on running python app.py
app.run(debug=False) # run the flask app

CMRTC 23



Android Malware Detection using Genetic Algorithm
B) CLASSIFIER.PY

import os
import pickle
import numpy as np
from keras.models import load model
from androguard.core.bytecodes.apk import APK
from genetic_algorithm import GeneticSelector
class CustomUnpickler(pickle.Unpickler):
""" https://stackoverflow.com/questions/277323 54/unable-to-load-files-using-pickle-and-multiple-
modules"""

def find class(self, module, name):
try:
return super().find class(__name , name)
except AttributeError:
return super().find_class(module, name)
sel = CustomUnpickler(open('./static/models/ga.pkl', 'rb")).load()
permissions = [ ]
with open('./static/permissions.txt', 'r') as f:
content = f.readlines()
for line in content:
cur_perm = line[:-1]
permissions.append(cur_perm)
def classify(file, ch):
vector = {}
result =0
name, sdk, size = 'unknown', 'unknown', 'unknown'
app = APK(file)
perm = app.get_permissions()
name, sdk, size = meta fetch(file)
for p in permissions:
if p in perm:
vector[p] =1
else:
vector[p] =0
data = [v for v in vector.values()]
data = np.array(data)
ifch==0:
ANN = load model('static/models/ANN.h5")
#print(data)
result = ANN.predict([data[sel.support_].tolist()])
print(result)
if result <0.02:
# return 'Benign(safe)’
result = 'Benign(safe)’
else:
# return 'Malware'
result = 'Malware'

CMRTC 24



Android Malware Detection using Genetic Algorithm

ifch==1:
SVC = pickle.load(open('static/models/svc_ga.pkl', 'rb'))
result = SVC.predict([data[sel.support_]])
if result == 'benign":
result = 'Benign(safe)'
else:
result = 'Malware'
return result, name, sdk, size

def meta_fetch(apk):

app = APK(apk)

return app.get app name(), app.get target sdk version(), str(round(os.stat(apk).st size / (1024 *
1024), 2)) + ' MB'

C) GENETIC ALOGIRTHM.PY

import random
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model selection import cross_val score
class GeneticSelector:
def init (self, estimator, n_gen, size, n_best, n_rand,
n_children, mutation_rate):
# Estimator
self.estimator = estimator
# Number of generations
self.n_gen=n _gen
# Number of chromosomes in population
self.size = size
# Number of best chromosomes to select
self.n_best =n_best
# Number of random chromosomes to select
self.n rand =n_rand
# Number of children created during crossover
self.n_children = n_children
# Probablity of chromosome mutation
self. mutation_rate = mutation_rate
if int((self.n_best + self.n_rand) / 2) * self.n_children != self.size:
raise ValueError("The population size is not stable.")

def initilize(self):

population = []

for 1 in range(self.size):
chromosome = np.ones(self.n_features, dtype=np.bool)
mask = np.random.rand(len(chromosome)) < 0.3
chromosome[mask] = False
population.append(chromosome)

return population

CMRTC 25



Android Malware Detection using Genetic Algorithm

def fitness(self, population):
X, y = self.dataset
scores = []
for chromosome in population:
score =-1.0 * np.mean(cross_val score(self.estimator, X[:, chromosome], y,
cv=5,
scoring="neg mean squared error"))
scores.append(score)
scores, population = np.array(scores), np.array(population)
inds = np.argsort(scores)
return list(scores[inds]), list(population[inds, :])

def select(self, population sorted):

population next = []

for 1 in range(self.n_best):
population next.append(population_sorted[i])

for 1 in range(self.n_rand):
population_next.append(random.choice(population_sorted))

random.shuffle(population next)

return population next

def crossover(self, population):
population next = []
for 1 in range(int(len(population) / 2)):
for j in range(self.n_children):
chromosomel, chromosome2 = population[i], population[len(population) - 1 - i]
child = chromosomel
mask = np.random.rand(len(child)) > 0.5
child[mask] = chromosome2[mask]
population next.append(child)
return population next
def mutate(self, population):
population next =[]
for 1 in range(len(population)):
chromosome = population[i]
if random.random() < self.mutation rate:
mask = np.random.rand(len(chromosome)) < 0.05
chromosome[mask] = False
population_next.append(chromosome)
return population_next

def generate(self, population):

# Selection, crossover and mutation

scores_sorted, population_sorted = self. fitness(population)
population = self.select(population_sorted)
population = self.crossover(population)

population = self.mutate(population)

# History
self.chromosomes_best.append(population_sorted[0])
self.scores _best.append(scores_sorted[0])
self.scores_avg.append(np.mean(scores_sorted)
return population

26
CMRTC



def fit(self, X, y):

self.chromosomes_best = []
self.scores_best, self.scores avg =[], []

self.dataset = X, y

self.n_features = X.shape[1]

g=1

population = self.initilize()

for i in range(self.n_gen):
population = self.generate(population)
print('generation:', g)
g+=1

return self

@property
def support_(self):

return self.chromosomes_best[-1]

def plot_scores(self):

CMRTC

plt.plot(self.scores_best, label='Best")
plt.plot(self.scores_avg, label='Average'")
plt.legend()

plt.ylabel('Scores')
plt.xlabel('Generation')

plt.show()

Android Malware Detection using Genetic Algorithm

27



Android Malware Detection using Genetic Algorithm

5. RESULTS

CMRTC 28



Android Malware Detection using Genetic Algorithm

5.1 SCREENSHOTS

=

D=areTat-S20d TeEvama R = Lrvdedl ups Hoibzes @ minT e Ret oz - {

Hi: C | FTA LR TR TR R T T |

"_: JURYIED Linliled 18 Law wdynmi pomiis e Toteranl sungeal i"

by Erid Y Te. i B e # Fge
B O+ kB ERn BT B )
Folw. anvmlca .peth. jzani epp. comfog [ UTLGEDCPCLDET | Filaewl)
LF regomct. feer| TEipneitkl’ ] Hu:ral ‘woacrkt
EIILTAZK rlgzritha ! 'feu-al Hetdark’
rEgil T, naee, fek, e sedalSerelaced fplnn para ol efanceorHgl S ErpneE 't Fllepars], &)
el roueir. Facal algard 3 YaspparT MecTae Cleslade

worurdry = plgaritam | Supmars whobar Clessifie- ]
rasull, rers ark, siza v cleveiradsoclaasita(es. pebrquiejees.co-sagl urLoan fmoRE L bilsrseal; 20
=atumn ratsee_bemaiael Tindex.akal”, resclitermeads, algaritraralporithmnobayed ], RECOrESpTRCIArESE, NETETIETH,
ackrack, aire=iizad

i = =3 Lkt
aiprai il bagatal el 8 i the Sl oy

l'.l.'lﬁ?!'!.' HE2ATE

¥ ity Sl (lare Taagingd

L TEIN . TL=F
WETHIMAT This b @ deswlozmenl se-ewres Dooepl e L Ivow prskizlio dealergnl,
Jun o prozucloon WEALD semewr orzlaad.

¥ Iwbur mcde: o'

2= 3D EHAAG S s LR T e g s S D e BEEL Ueardber i Tepdng Guogrplibde wnTlevlos 200 mvus s die
Jgootl Rhes uaing esfazon D.00I Tazaoropht Jsed to Ermaking coda orooreencdd redulta. oda T opIir oen taak., Fo- moce Anfo
refar i

Jesledriipam pepienis Tavad e pooal cedeiwteres. Prmlimes rrdrp-aii e oalrabl Lt -Tdml et tira

urerkarnisp,

T ogpnndng an FFpos 7 BH T s Ceds e iR E Tl

hout - Lo s d Ui Dl T BRI e

Screenshot 5.1.1- Obtaining URL after running the app.y file in project folder.

(LRt e f B R ] K Loithed 1 - iy Mot £ | BERE . L] o - oy e 1 L T

ANDROID MALWARE DETECTION

u R Ty Rive i s

CMRTC

Uplaad Asa bbetzd

et P L

Screenshot 5.1.2- User interface for uploading sample android malware application APIs

29




Android Malware Detection using Genetic Algorithm

Screenshot 5.1.3- Sample malware application APIs for testing.

B v Je andraid. permission BIND_WALLPAPER v
[ fi L [1 I I G | | 4 | I i Q fl R 5 .
' ‘tlas:\ @lmm.guaglcnn‘.momcum.chan rom.amaz ancreid, pde.hafas: com.citym android,pecom.micre andraid. p android,pandroid poom,sec.e com.ones com ksmacom.htc,p com e & an
£ benign ) 0 0 0 0 0 0 I 0 i 0 0 il 0 0 0 0 0
! benign 0 0 0 0 0 0 0 0 0 0 0 0 0 U i 0 0 0
4 benign i i i i i i i i i 0 t i i 0 i i i i
5 benign i 0 i ] 0 i 0 I 0 i i 0 i 0 0 i 0 0
§ henign i 0 fi ] 0 U 0 i 0 i i 0 i 0 0 0 0 0
7 benign i 0 0 0 0 0 0 I 0 0 0 0 il 0 0 0 0 0
i benign 0 0 il 0 0 0 0 0 0 i 0 0 0 U 1] 0 0 0
§ henign i i i ] i i i i i i t 0 i 0 i i i i
10 benign i 0 i 0 0 i 0 I 0 i i 0 i 0 0 i 0 i
11 benign i 0 i ] 0 0 0 I 0 0 i 0 i 0 0 0 0 0
12 malware 1 0 i 0 0 t 0 0 1 i 1 ] L 0 0 0 0 1
13 mahware 1 0 0 0 0 ! 0 0 ] 0 ] 0 l U i 0 0 1
14 makvare 1 U i 0 U 1 0 i 1 i 1 U l U 1] 0 i 1
15 malware 1 0 i ] 0 ! 0 0 1 i 1 0 L 0 0 i 0 1
16 malware 1 0 fi ] 0 L 0 i i i 1 0 L 0 ] 0 0 1
7 malware 1 0 0 0 0 ! 0 I 1 i 1 0 L 0 0 0 0 1
18 malware 1 0 i 0 0 1 0 [ 1] ] 0 l 0 I 0 0 ]
19 mahvare 1 i i 0 i 1 0 0 1 1] 1 i 1 U 1] 0 i 1
20 mahware 1 0 i 0 0 ! 0 I 1 i 1 0 L 0 0 i i 1
Screenshot 5.1.4- Discriminatory features selected using genetic algorithm
CMRTC 30




Android Malware Detection using Genetic Algorithm

Lul Iow vl ad & aws 5 i b - i Meeseed  ® Y 1o ] u wpry  beew el bdle = | =+ A

“ a 127044 : ™ B

ANDROID MALWARE DETECTION

ARPK Classiicathan Cutput
Algarithim
Uplcad App Wetadata

Screenshot 5.1.5- Testing Malware Sample 1 using Support Vector Machine (SVM) Model

] erreernl et roke L = e e Wl _" 1 ¥ £l mmrs - ey e Fod " i3 . a

L R T

ANDROID MALWARE DETECTION

E hca Cutpu
Algaitem
i o
Upload Agp relacata
¥ # F

Screenshot 5.1.6- Testing Malware Sample 1 using Neural Network (NN) Model

CMRTC 31



Android Malware Detection using Genetic Algorithm

n [ T e unrdisdil el Rawead X

& L 1ETaad L

E iy e Ll bl el S uf

AMDROID MALWARE DETECTIOM

APK Clanssdicathan LAt
Abgarrithim
Uphead App Metadata

Screenshot 5.1.7- Testing Malware Sample 2 using Support Vector Machine (SVM) Model

™ L bl el ik 8 = o L PR e S S i 00 1A o iy e D L = 4 u}

ANDROID MALWARE DETECTION

AP Classification Catput
Algaridhm
Merstal Feramr
Uplosd App Metadatz
e F i

|

Screenshot 5.1.8- Testing Malware Sample 2 using Neural Network (NN) Model

CMRTC 32



Android Malware Detection using Genetic Algorithm

el el 1 b A H e ®

ANDROID MALWARE DETECTION

dlgorle

Inpdiiasdl Apip

a

®

Cutput

Metadata

daddyin Loy Diwt B0rua

-

Screenshot 5.1.9- Testing Malware Sample 3 using Support Vector Machine (SVM) Model

rl fimrmwngeabrs pha=1- % lnda™ e decst

: . e
T L2 AR A

ANDROID MALWARE DETECTION

AFK Claseilicatar

Algaritim

el Hebpns w |

lipload &pp

i S oo

BinE

231090

R B g

Dot

AeitEad ez e

pun byela e

1y -

s Rl ALCETal M ih

Metadaza

arert SIE Vimon

Sl sz DG k42

L

Screenshot 5.1.10- Testing Malware Sample 3 using Neural Network (NN) Model

CMRTC

33




Android Malware Detection using Genetic Algorithm

) SmrTEtsd LE v E e ® Cotied 14 - s Mobdbead.

[a% [ il T

ANDROID MALWARE DETECTION

3 Ty - apww I Bl B T = o

Algarifhm

lmnas App

—

Screenshot 5.1.11- Testing Malware Sample 4 using Support Vector Machine (SVM) Model

i} T nwa wacymbadvars ::l i b2d ame Srrzed

= ] HI %

2T =500

ANDROID MALWARE DETECTION

i R R

E wyy bpae T2 w 4 1A

C R B |

APE Classication

Algarithe

hizirg Hstwacrl b

ot

e as Mawine

[ T e et A8

Aoz

Matadata

A bere WS - Toliaee

I3 A wErmn 25
P a1 WE

Screenshot 5.1.12- Testing Malware Sample 4 using Neural Network (NN) Model

CMRTC

34




Android Malware Detection using Genetic Algorithm

™ Lo o i i e T ibeaid - K el b Balmecd w0 | [ i i} = mamiy  wande bl bl x|+

e

ANDROID MALWARE DETECTION

T
AFE Classthcaban I_I|_||_ il

Bl g

Upload Apg Matadata

ams Min

s

Screenshot 5.1.13- Testing Malware Sample 5 using Support Vector Machine (SVM) Model

M| wansiaided sdici b x| 0 Ladedts dodie M lilsse ® I: S E T x Gk g b el il [ £+

& (S OB kT e P oot i

ANDROID MALWARE DETECTION

AR Clazsiticatian Oygteut
M-;u-ril:hrn P be ] Tlasse Mlalaars
fzdel Sccarace: G126 &
T = {edel Azoarac LR
Upload App Motadata

whoos FiC fea=paanphops
Apa M 18k fdoal

Tavsjel ANK Yarwom 7R

Filo size: 151 MG

Screenshot 5.1.14- Testing Malware Sample 5 using Neural Network (NN) Model

CMRTC 35



Android Malware Detection using Genetic Algorithm

5.2 RESULT ANALYSIS

The proposed work has been performed on a dataset of around 40,000 APKs consisting of two
categories: 20, 000 Malware or malicious applications and 20,000 Goodware or benign applications.
The APKs are reverse engineered to extract features. A CSV is generated consisting of 99 features
with class labels as Malware (represented by 0) and Goodware (represented by 1). The primary
purpose of the work is selection of optimized feature subset for which Genetic Algorithm has been
used. The discriminatory features selected by Genetic Algorithm are fed as input to train Support
Vector Machine and Neural Network classifiers. The parameters for Support Vector Machine are
set as follows: Radial Basis Function (RBF) as kernel function and number of folds for cross-
validation as 10. The number of hidden layers used for the feed-forward Neural Network is one of
size 40.

The performance of these two classifiers in distinguishing between Malware and Goodware is

compared before and after feature selection.

No of ALLC Features ALLC
features Selecied
Algorithm before
feature
selection
Support 99 0891 33 9803
Yector
Machine
Meural 99 Q876 40 OR28
Metwork

Table 5.2.1- Feature selected by genetic algorithm for different classifiers and accuracy obtained
with selected features

Table 5.2.1 shows the features selected by the Genetic algorithm for different classifiers and
classification accuracy of classifier with the selected subset of features obtained from Genetic
algorithm. It can be analyzed from table I that the AUC for both classifiers is preserved to quite an
extent with significant reduction in number of features. Below graphs shows the ROC curve for
different classifiers before and after feature selection. ROC curves for the Support Vector Machine
and Neural Network classifiers are shown in graph 1 and graph 2 respectively. It can be deduced

from the ROC curve that classifiers perform well with the selected features.

CMRTC 36



Android Malware Detection using Genetic Algorithm

: Comparision of ROC Curves for SYM Class fier Compansion of ROC Curves for Neural Network Classifier
|. o
ol | mok
i
|
8 8 5! i+ {
BT i I.I-'-"I
£
: :
}S.'-:s %05
i
- S £ 14
= =4
[ - e
o i
f ~ pofor haykire saecban |
" fe Teilute s chos EAT t;ﬁr‘ﬂ;ﬁr‘! seiohan | 4
aher el
0 Baiecion
- “ 1 i L 1 i L
6 0f 07 D3 D& @5 OB 7 0B oF T T T
s posilieg 18 bt 2

Graph 5.2.2 and 5.2.3- ROC curves for (1) SVM (2) NN Classifier Before and After Feature Selection

T L
o

£

=7))

= iy
ey

T

3

B

L s
E

2]

Y

=

L 255
o

=

I

=

g

= (%
Lj,.l AApdcatiom 1 Application 2 Application 3 Application 4
b SVM B N

Graph 5.2.4- Comparing Accuracy of SVM and NN machine learning models.

CMRTC 37



Android Malware Detection using Genetic Algorithm

6. TESTING

CMRTC 38



Android Malware Detection using Genetic Algorithm

6. TESTING

6.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying to discover every
conceivable fault or weakness in a work product. It provides a way to check the functionality of
components, subassemblies, assemblies and/or a finished product. It is the process of exercising
software with the intent of ensuring that the Software system meets its requirements and user
expectations and does not fail in an unacceptable manner. There are various types of tests. Each

test type addresses a specific testing requirement.

6.2 TYPES OF TESTING

6.2.1 UNIT TESTING

Unit testing involves the design of test cases that validate that the internal program logic is
functioning properly, and that program inputs produce valid outputs. All decision branches and
internal code flow should be validated. It is the testing of individual software units of the
application .it is done after the completion of an individual unit before integration. This is a
structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform
basic tests at component level and test a specific business process, application, and/or system
configuration. Unit tests ensure that each unique path of a business process performs accurately to

the documented specifications and contains clearly defined inputs and expected results.

6.2.2 INTEGRATION TESTING

Integration tests are designed to test integrated software components to determine if they run as
one program. Testing is event driven and is more concerned with the basic outcome of screens or
fields. Integration tests demonstrate that although the components were individually satisfaction,
as shown by successfully unit testing, the combination of components is correct and consistent.
Integration testing is specifically aimed at exposing the problems that arise from the combination

of components.

CMRTC 39



Android Malware Detection using Genetic Algorithm

6.2.3 FUNCTIONAL TESTING

Functional tests provide systematic demonstrations that functions tested are available as
specified by the business and technical requirements, system documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input . identified classes of valid input must be acceptad.

Tvalid Tnput  identified classes of invalid input must be rejected)|

Funclions : identified functions must be exercised.

Output identified classes of application outpuls must be exencised,

Systems/Procedures: interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key functions, or
special test cases. In addition, systematic coverage pertaining to identify Business process flows,

data fields, predefined processes.

6.2.4 TEST CASES

Test case 1D | Test case name Purpase | Input Output

1 Application test 1 | To check if the SYM Upload malware | Malware are
algorithm performs | APK file predicted carrectly
its task with given

. datasets .

2 Application test 2 | To check if the NN Upload Goodware are
algorithm performs goodware APK prodicted correctly
its task with given file
datasets

3 Application test 3 | To check if the given u ploading the . .Malwarﬁfﬁnudwa re
file axtension other file other than not predictad
than APK it does not | the APK correctly
perfarm extension

CMRTC

40



7. CONCLUSION



Android Malware Detection using Genetic Algorithm

7.1 CONCLUSION

As the number of threats posed to Android platforms is increasing day to day, spreading mainly
through malicious applications or malwares, therefore it is very important to design a framework
which can detect such malwares with accurate results. Where signature-based approach fails to
detect new variants of malware posing zero-day threats, machine learning based approaches are
being used. The proposed methodology attempts to make use of evolutionary Genetic Algorithm
to get most optimized feature subset which can be used to train machine learning algorithms in
most efficient way. From experimentations, a decent classification accuracy of more than 94% is
maintained using Support Vector Machine and Neural Network classifiers while working on lower
dimension feature-set, thereby reducing the training complexity of the classifiers. Further work
can be enhanced using larger datasets for improved results and analyzing the effect on other

machine learning algorithms when used in conjunction with Genetic Algorithm.

7.2 FUTURE SCOPE

As, the number of dangers presented to Android platforms is growing day to day, spreading
primarily via malicious apps or malwares, thus it is extremely essential to develop a framework
which can identify such malwares with accurate results. The suggested approach tries to make use
of evolving Genetic Algorithm to obtain most optimal feature subset which can be utilized to train
machine learning algorithms in most efficient manner. Thus, decreasing the training complexity of
the classifiers Further study may be done utilizing bigger datasets for better results and examining

the impact on other machine learning methods when used in combination with Genetic Algorithm.

CMRTC

42



CMRT

8. BIBILOGRAPHY



Android Malware Detection using Genetic Algorithm

8. BIBILOGRAPHY

8.1 REFERENCES

[1] D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck, “Drebin: Effective and
Explainable Detection of Android Malware in Your Pocket,” in Proceedings 2014 Network and
Distributed System Security Symposium, 2014.

[2] N. Milosevic, A. Dehghantanha, and K. K. R. Choo, “Machine learning aided Android malware
classification,” Comput. Electr. Eng., vol. 61, pp. 266274, 2017.

[3] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, “Significant Permission Identification for
Machine-Learning-Based Android Malware Detection,” IEEE Trans. Ind. Informatics, vol. 14, no. 7,
pp. 3216-3225, 2018.

[4] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM: Effective and Efficient Behavior-
based Android Malware Detection and Prevention,” IEEE Trans. Dependable Secur. Comput., vol. 15,
no. 1, pp. 83-97, 2018.

[5] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu, “SAMADroid: A Novel 3-
Level Hybrid Malware Detection Model for Android Operating System,” IEEE Access, vol. 6, pp.
4321-4339, 2018.

[6] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A Multimodal Deep Learning Method for
Android Malware Detection using Various Features,” vol. 6013, no. ¢, 2018
[7] A. Martin, F. Fuentes-Hurtado, V. Naranjo, and D. Camacho, “Evolving Deep Neural Networks
architectures for Android malware classification,” 2017 IEEE Congr. Evol. Comput. CEC 2017 - Proc.,
pp. 1659-1666, 2017.

[8] X. Su, D. Zhang, W. Li, and K. Zhao, “A Deep Learning Approach to Android Malware Feature
Learning and Detection,” 2016 IEEE Trust., pp. 244-251, 2016.

[9] K. Zhao, D. Zhang, X. Su, and W. Li, “Fest : A Feature Extraction and Selection Tool for Android
Malware Detection,” 2015 IEEE Symp. Comput. Commun., pp. 714-720, 4893.

[10] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review on feature selection in
mobile malware detection,” Digit. Investig., vol. 13, pp. 22-37, 2015.

[11] A. Firdaus, N. B. Anuar, A. Karim, M. Faizal, and A. Razak, “Discovering optimal features using
static analysis and a genetic search-based method for Android malware detection *,” vol. 19, no. 6, pp.
712— 1736, 2018.

[12] A. V. Phan, M. Le Nguyen, and L. T. Bui, “Feature weighting and SVM parameters optimization
based on genetic algorithms for classification problems,” Appl. Intell., vol. 46, no. 2, pp. 455-469,
2017.

[13] D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon and K. Rieck, "Drebin: Effective and
Explainable Detection of Android Malware in Your Pocket”, Proceedings 2014 Network and
Distributed System Security Symposium, 20/74.

[14] T. Kim, B. Kang, M. Rho, S. Sezer and E. G. Im, "A Multimodal Deep Learning Method for
Android Malware Detection using Various Features", vol. 6013, no. c, 2018.

[15] A. Martin, F. Fuentes-Hurtado, V. Naranjo and D. Camacho, "Evolving Deep Neural Networks
architectures for Android malware classification", 2017 IEEE Congr. Evol. Comput. CEC 2017-Proc.,

pp. 1659-1666, 2017.

CMRTC
44



Android Malware Detection using Genetic Algorithm

8.2 WEBSITES

https://ieeexplore.ieee.org/document/8769039
https://jespublication.com/upload/2021-V1211037.pdf

8.3 GITHUB LINK

https://github.com/Sukrutha-101/Project

CMRTC 45


https://ieeexplore.ieee.org/document/8769039
https://jespublication.com/upload/2021-V12I1037.pdf

CMRT

9. PAPER PUBLICATION



T %
Usm | - - - e - - -
~=ugtd  |nternational Journal of Scientific Research in Engineering and Management (IJSREM)
w Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

ANDROID MALWARE DETECTION USING GENETIC ALGORITHM
Najeema Afrin, P Likhitha Krishnaja, Adi Pranay, N Sukrutha

Affiliated to JNTUH, Dept. Of CSE, CMR Technical Campus, Hyderabad, Telangana, India

ABSTRACT

Android has the biggest global market share due to its open-source nature and Google support
because it is the most widely used operating system in the world, it has attracted the attention of
cyber criminals who use it to spread harmful software applications. This research provides a
successful machine -learning based method for malware detection on Android using an
evolutionary genetic algorithm feature selection that is discriminatory. The Genetic Algorithm is
used to select characteristics before you use machine learning classifiers, make sure you know
how good they are at detecting malware. After feature selection, the results are compared. The
results of the tests show that genetics is a viable field of study. The algorithm returns the best
optimal feature subset, reducing the feature dimension. To a fraction of the original feature set a
classification accuracy of greater than 94 percent is considered excellent once feature selection
was preserved

Keywords: Android, Genetic algorithm, Malware, feature selection, Classifiers, cyber-criminal.

. INTRODUCTION

The purpose of this studies is to increase a gadget-studying-primarily based approach for
Android malware detection that makes use of a Genetic algorithm to select most advantageous
features. On this studies machine gaining knowledge of classifiers are trained the use of
selected capabilities from the Genetic set of rules, and their ability to hit upon malware earlier
than and after characteristic selection is compared. The effects of the experiments show that
the Genetic set of rules offers the pleasant surest function subset, decreasing the characteristic
dimension to much less than half of the unique function set. Given the growing number of
Android malware variants, an effective malware detection gadget for Android malware is
mandatory. In contrary to signature-based totally methods, which want frequent signature
database updating, machine studying-based tactics can be employed in mixture with static and
dynamic analysis.

. METHODOLOGY

Genetic algorithm has been employed in the proposed work because of its ability to discover a feature subset picked
from the original feature vector that delivers the greatest accuracy for classifiers on which they are trained. It has
previously been used in conjunction with machine learning and deep learning algorithms to find the best feature
subset. Feature extraction using the Androguard tool and feature selection using the Genetic Algorithm are the two
main components of the suggested technique. Finally, for assessment, the selected characteristics are supplied into
machine learning algorithms. Static features are derived from AndroidManifest.xml, which provides all of the
pertinent information about the Apps required by any Android platform. The Androguard utility was used to
disassemble the APKs and extract the data.

© 2022,IJSREM | www.ijsrem.com | Page 1


http://www.ijsrem.com/

~=ugtd  |nternational Journal of Scientific Research in Engineering and Management (IJSREM)
I Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

ll. MODELING AND ANALYSIS

Selecting the most crucial characteristics in malware detection is a vital level since it has a primary affect on the
quality of experimental results. Working on a low-dimensional feature vector with simply discriminating traits may
also assist lessen the getting to know classifier's computational value. The CSV with all characteristics is put thru the
Genetic algorithm, which returns the most excellent subset of functions for the gadget mastering primarily based
classifier. The capabilities chosen are represented by using binary forms termed chromosomes, wherein the feature is
represented by way of 1 if it's far blanketed and 0 if it's miles omitted within the chromosome. The genetic set of rules
continues track of a populace of traits or chromosomes, as well as their health rankings, such that chromosomes with
higher health rankings are prioritized.

ARCHITECTURE DESCRIPTION:

Android APKSs:

Exclusive pairs of Android apps are available: reverse engineering is used to extract characteristics together with
permissions and the remember of App additives including hobby, offerings, and content vendors. Those characteristics
are signified as a function vector in Csv record format, with the elegance labels Malware and Goodware displayed by
zero and 1 consisting of each.

Feature Vector: As follows, capabilities are retrieved and mapped to a function vector: App additives: A function
vector is generated the use of the counts of app additives consisting of hobby, offerings, content providers, and
Broadcast Receivers. Permissions: The function dimensional vector space, with a dimension set to one if the app x
contains the characteristic and 0 in any other case.

IR - — o -

FdubHIA (e = T
AFEE Rl HPaE g

- - - -

L ||

Seature exbrachan
(Fermissions and applcaton components)

Feature selestion
(Discriminatory festure selected using gentic algorithm)

Evaluaton of Sy machinge laaming algorthm

DNsplay mccuracy af maching earmeng rmods! and results

Figure 1: Architecture

© 2022,IJSREM | www.ijsrem.com | Page 2


http://www.ijsrem.com/

IISREM
~=ugtd  |nternational Journal of Scientific Research in Engineering and Management (IJSREM)
I Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

Iv. RESULTS AND DISCUSSION

The analysis changed into accomplished on a dataset of roughly 40,000 APKs divided into categories: 20,000 Malware
(malicious software) and 20,000 Goodware (harmless software program)

rennls,
eld* ryoow

TR

v oalpaoty
raee, td<, el

*owm| algeribe

n e N T T S T T LT R " I S aqnr byes wilai X - - A
| 4 o0y hart ' ¥ [ ! % '@ o
T RPYIEr URHIAA Y Lo Crebps o 3 ohues 20 Dt it A :
. 3 Yos los - el HE . R Al B
R DTSN WS TN R T

S, IPLORD 0D ), filetee))
mared Meiwsrs'

R L

clngad®ier . clanalify(se. autr Jairlapp.conflyg] ‘UL

Folilh ], Mlecam), 3

| s Tagpeet e

g ibwsl Tapene

Class

TER AT
-

reands, naee, ¢, cize

canaed e Loty (se. sanr Jadrlapp.conflgl ' oo

AoCh'], Mlecame), L

matare rarzar_tenplatel Andec, atnlT rascitvreands, elgocitemacacgarathag bepall, SIIJTeIpTECIArEcH, rametTame,
bl voroas e

AT =20y rrekte rewLoy
yhick cee

e e

I s
833 car(2abig p2laal * ot

spaees temoen, 00 b Jae 2t dr e produstion desiistett

el

WEMING: Tate L2 0 20

LT "
Uoowbog mads: ol

oMt RTG AN h ez r2nd 2400 a0 paager R eouar e\ Base ot i Usahinritag Tradrg o wrplokle artiratie GG “roe vwealon

O.ad.3.p0rth v Jaivp enraier L.OGL, Thlr migat Leez to breaking code oF Lveniii reandta. Une ot ot oet rizk, Fir mee Unfo

Planeas vrhie

RN T A Yare dee

1

I L folvelng AP LA RS TN ' e Omivisan Drgedal ol
Vaerdaming,

" Furning o kb S

20 2.2 1:00000 Py SRS R2omaat)

Figure 2: Obtaining URL.

Daavesavr bt awminl % PRI AggaRakbaad o [N riziwer . AN AR b b -

e

ANDROID MALWARE DETECTION

ARE L lase fieation Qutput

Algowithm Pk d Cly
) M S
Veury Nulmoh v

Updoad App Motacata
e LR R LA

UYL

n T L

Figure 3 : User Interface.

| Page 3

© 2022, IJSREM | www.ijsrem.com


http://www.ijsrem.com/

~=ugtd  |nternational Journal of Scientific Research in Engineering and Management (IJSREM)
I Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

Figure 4 : Sample Malware Applications.

ANDROID MALWARE DETECTION

Agorrm

Updood Azp Metadata

Caoces M

Figure 5 : Testing Malware Sample.

© 2022,IJSREM | www.ijsrem.com | Page 4


http://www.ijsrem.com/

IISREM 3§
~=ugtd  |nternational Journal of Scientific Research in Engineering and Management (IJSREM)

w Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

V.  CONCLUSION

This section carries all of the vital points.. As the number of dangers posed to Android structures grows every day,
spreading frequently thru malicious packages or malware, it's miles essential to increase a framework that could
correctly come across such malware. Device learning-primarily based strategies are applied whilst signature-primarily
based methods fail to detect new variations of malware posing zero-day risks. The counseled method uses an
evolving Genetic algorithm to achieve the best most efficient feature subset that can be utilized to educate device
mastering algorithms in the best way

VI. REFERENCES

[1] T.D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck, “Drebin: Effective and Explainable Detection of
Android Malware in Your Pocket,” in Proceedings 2014 Network and Distributed System Security Symposium,
2014.

[2] N. Milosevic, A. Dehghantanha, and K. K. R. Choo, “Machine learning aided Android malware
classification,” Comput. Electr. Eng., vol. 61, pp. 266-274, 2017.

[3] J.Li, L. Sun, Q.Yan, Z. Li, W. Srisa-An, and H. Ye, “Significant Permission Identification for Machine-Learning-
Based Android Malware Detection,” IEEE Trans. Ind. Informatics, vol. 14, no. 7, pp. 3216-3225, 2018.

[4] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM: Effective and Efficient Behavior- based
Android Malware Detection and Prevention,” IEEE Trans. Dependable Secur. Comput., vol. 15, no. 1, pp.
83-97, 2018.

[5] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu, “SAMADroid: A Novel 3- Level Hybrid
Malware Detection Model for Android Operating System,” IEEE Access, vol. 6, pp. 4321-4339, 2018.

[6] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A Multimodal Deep Learning Method for Android
Malware Detection using Various Features,” vol. 6013, no. c, 2018.

[71 A. Martin, F. Fuentes-Hurtado, V. Naranjo, and D. Camacho, “Evolving Deep Neural Networks architectures for
Android malware classification,” 2017 IEEE Congr. Evol. Comput. CEC 2017 - Proc., pp. 1659-1666, 2017.

[8] X.Su, D.Zhang, W. Li, and K. Zhao, “A Deep Learning Approach to Android Malware Feature Learning and
Detection,” 2016 IEEE Trust., pp. 244-251, 2016.

[9] K.Zhao, D.Zhang, X. Su, and W. Li, “Fest : A Feature Extraction and Selection Tool for Android Malware
Detection,” 2015 IEEE Symp. Comput. Commun., pp. 714-720, 4893.

[10] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review on feature selection in mobile malware
detection,” Digit. Investig., vol. 13, pp. 22—-37, 2015.

[11] A. Firdaus, N. B. Anuar, A. Karim, M. Faizal, and A. Razak, “Discovering optimal features using static
analysis and a genetic search-based method for Android malware detection *,” vol. 19, no. 6, pp. 712—
736, 2018.

[12] A.V.Phan, M. Le Nguyen, and L. T. Bui, “Feature weighting and SVM parameters optimization based

© 2022,IJSREM | www.ijsrem.com | Page 5


http://www.ijsrem.com/

r 1

IISREM

il International Journal of Scientific Research in Engineering and Management (IJSREM)
w Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

on genetic algorithms for classification problems,” Appl. Intell., vol. 46, no. 2, pp. 455—-469, 2017.

[13] D. Arp, M. Spreitzenbarth, M. Hilbner, H. Gascon and K. Rieck, "Drebin: Effective and Explainable
Detection of Android Malware in Your Pocket”, Proceedings 2014 Network and Distributed System
Security Symposium, 2014.

[14] T. Kim, B. Kang, M. Rho, S. Sezer and E. G. Im, "A Multimodal Deep Learning Method for Android Malware
Detection using Various Features", vol. 6013, no. c, 2018.

[15] A. Martin, F. Fuentes-Hurtado, V. Naranjo and D. Camacho, "Evolving Deep Neural Networks
architectures for Android malware classification", 2017 IEEE Congr. Evol. Comput. CEC 2017-Proc., pp.
1659-1666, 2017.

© 2022,IJSREM | www.ijsrem.com | Page 6


http://www.ijsrem.com/

CMRTC

10. CERTIFICATES

52


52

CMRTC


in recognition the pumjm# ;
ANDROID MALWARE DETECTION USIN

h'-."'.l'n"lul'l.'.lj Sremeconi




Adi ¢

f"mﬁeﬁﬁ";ﬁf £t Eyﬁiﬁﬁ{; _ﬁ’;ﬁ?ﬂ"“ ':F :

WAL I SremLCom

()

i
=




in recagnition the publice

el i
i

ANDROID MALWARE DETECTION USING
f"ff.rﬁﬁ#";m’-" 1t J/?%Mr _ﬁ:’;ﬁ‘ﬁm{ -:’ : _.'%- I

h'-.".l'n"lul'lu'.lj Sremeconi




in recognition the publica

el

ANDROID MALWARE DETECTION 1
freldeshed i _-/?%ﬁﬁw _ﬁ:’;ﬁ‘ﬁw{ & e

h'-.".l'n"lul'lu'.lj Sremeconi




	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	ACKNOWLEGDEMENT
	ABSTRACT

	LIST OF FIGURES/TABLES
	1. INTRODUCTION
	1.1 PROJECT SCOPE
	1.3 PROJECT FEATURES

	2. SYSTEM ANALYSIS
	2. SYSTEM ANALYSIS
	SYSTEM ANALYSIS
	2.1 PROBLEM DEFINITION
	2.2 EXISTING SYSTEM
	2.2.1 LIMITATIONS OF EXISTING SYSTEM

	2.3 PROPOSED SYSTEM
	2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

	2.4 FEASIBILITY STUDY
	2.4.1 ECONOMIC FEASIBILITY
	2.4.2 TECHNICAL FEASIBILITY
	2.4.3 BEHAVIORAL FEASIBILITY

	2.5 HARDWARE & SOFTWARE REQUIREMENTS
	2.5.1 HARDWARE REQUIREMENTS:



	3. ARCHITECTURE
	3. ARCHITECTURE
	3.1 PROJECT ARCITECTURE
	3.2 MODULES DESCRIPTION
	3.2.1 DATA PREPROCESSING
	3.2.2 FEATURES EXTRACTION AND SELECTION
	3.2.3 Discriminatory Feature Selection
	Figure 3.2.3 Feature Selection using Genetic Algorithm
	3.2.4 MACHINE LEARNING BASED CLASSIFICATION
	3.2.5 DISPLAY ACCURACY RESULTS

	3.3 USE CASE DIAGRAM
	3.4 CLASS DIAGRAM
	3.5 SEQUENCE DIAGRAM
	3.6 ACTIVITY DIAGRAM
	3.7 DATAFLOW DIAGRAM


	4. IMPLEMENTATION
	4. IMPLEMENTATION
	4.1 SAMPLE CODE


	5. RESULTS
	5.1 SCREENSHOTS
	5.2 RESULT ANALYSIS

	6. TESTING
	6. TESTING
	6.1 INTRODUCTION TO TESTING
	6.2 TYPES OF TESTING
	6.2.1 UNIT TESTING
	6.2.2 INTEGRATION TESTING
	6.2.3 FUNCTIONAL TESTING
	6.2.4 TEST CASES


	7. CONCLUSION
	7.1 CONCLUSION
	7.2 FUTURE SCOPE

	8. BIBILOGRAPHY
	8. BIBILOGRAPHY
	8.1 REFERENCES
	8.2 WEBSITES
	8.3 GITHUB LINK


	9. PAPER PUBLICATION

